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Overview

Timeline Barriers
m Start: October 2008 B Development of a safe cost-effective
B Finish: September 2014 PHEV battery with a 40 mile all electric
B <8% Complete range that meets or exceeds all

B Ongoing project from HEV performance goals

Program now emphasizing — Interpreting complex cell
PHEV applications electrochemical phenomena
— ldentification of cell degradation
mechanisms
Budget Partners (Collaborators)

B Daniel Abraham, Argonne
B Sun-Ho Kang, Argonne

B Andrew Jansen, Argonne
® \Wenquan Lu, Argonne

B Kevin Gering, INL

B Total project funding
® 100% DOE
m FY2009: $350K
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Objectives, Milestones, and Approach

B The objective of this work is to correlate analytical diagnostic results
with the electrochemical performance of advanced lithium-ion battery
technologies for PHEV applications

— Link experimental efforts through electrochemical modeling studies
— ldentify performance limitations and aging mechanisms
B Milestones for this year:

— Develop an efficient parameter fitting technique for model (partially
completed)

— Initiate electrochemical modeling studies on PHEV lithium-ion
battery technologies (completed)

— Develop improved electrochemical model for two-phase active
materials (mostly completed)

B Approach for electrochemical modeling activities is to build on earlier
successful HEV characterization and modeling studies in extending
efforts to PHEV technologies

— Expand and improve data base and modeling capabilities
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Major Accomplishments and Technical Progress

B Equivalent circuit interfacial model developed for streamlining electrode
parameter determination

— Parameter estimation remains primary challenge for examining new
intercalation active material electrodes

B |nitiated examination of changes in general battery characteristics and
testing protocols going from HEV to PHEV battery studies (e.g. thicker
electrodes, different operating currents, wider state-of-charge swings,
controlled power testing, etc.)

— Conducted electrode thickness cell performance simulations

B Developed new phase-transition reaction-diffusion lithium transport
model for two-phase electrode active materials (e.g. LiCg, LiFePO,,
LiMn,O,, Li,Ti;O45,)

— Integrated new two-phase active material model into
electrochemical cell model and examined graphite negative
electrode as test case

— Compared new model to earlier shell-core two-phase model
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Description of Electrochemical Model

B Phenomenological model developed for AC impedance and DC
studies using same constituent equations and parameters

B Combines thermodynamic and interfacial effects with continuum
based transport equations

B Complex active material / electrolyte interfacial structure

— Film on active particles acts as an electrolyte layer with restricted
diffusion and migration of lithium ions

— Surface layer of active particle inhibits the diffusion of lithium into
the bulk active material

— Electrochemical reaction and double layer capacitance at
film/layer interface

— Particle contact resistance and film capacitance

B Volume averaged transport equations account for the composite
electrode geometry

Lithium diffusion in active particles and multiple particle fractions
The system of partial differential equations are solved numerically
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Electrochemical Modeling Effort uses AC Impedance

Model to Estimate Interfacial and Active Material
Parameters “
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Equivalent Circuit Model Developed For Streamlining
Electrode Interfacial Parameter Determination

B Interfacial portion of impedance model Simulation of Interfacial Impedance for
IS similar to full electrode model Gen 3 NMC Positive Electrode

— Relatively uniform current |
distribution in electrode

B Suggests interfacial parameters can
be fit separately without using full
Impedance model

B Therefore with an equivalent circuit
model, existing fitting programs can

4+————— —Interfacial Impedance Model Only

\
A

—— Complete Electrode Model

VN —
VTN

Z" (Imaginary), ohm cn?

[N

be utilized to determine interfacial 0 —— s
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Equivalent Circuit Model Utilized to Determine Electrode
Interfacial Parameters

= Gen 2 Positive Data

—Full Impedance Model

—— Full Model with Equivalent Circuit
Parameters

/

/

Z" (Imaginary) ohm enf

,\N

7 9 11 13 15
Z' (Real) ohm cn?’

+* Gen 3 Positive Data
—Full Impedance Model
— Full Model with Equivalent Circuit Parameters
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B Good agreement to full model determined interfacial parameters for
Gen2 NCA and Gen3 NMC positive electrodes

B A full impedance model optimization program is needed to efficiently

fit the active material parameters associated with the low frequency
iImpedance
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Transition from Modeling HEV to PHEV Battery Technology
Studies

B Generally, two levels of model changes

— Straight forward modifications (e.g. thicker electrodes, wider state-
of-charge swings, new testing protocols, etc.)

— More extensive modifications that involve fundamental changes in
the active material and/or interfacial portion of the electrochemical
model (e.g. coated active materials, two phase reaction active
materials, new degradation mechanisms, etc.)

B PHEV studies initiated with electrode thickness cell performance
simulations on a series of NCA positive electrodes using previously
established Gen 2 parameters

— Experimental confirmation of rapid increase in electrode impedance
as thickness and active area approach zero

— Consistently high experimental values at low electrode loadings
attributed to partial breakdown of volume averaging assumption

— Spread in experimental results at high electrode loadings attributed
to stability of lithium counter electrode
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NCA Positive Electrode Loading Study: Half-Cell
Experimental Impedance Compares Favorably to
Electrochemical Model with Gen 2 Electrode Parameters

Discharge 1.8C HPPC ASI for NCA/Li Cell at 50% DOD
160
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Graphite Negative Electrode Used as a Test Case for New
Phase-Transition Reaction-Diffusion Lithium Transport

Model for Two Phase Electrode Active Materials

B Staged lithium intercalation into graphite well established in literature
with open circuit voltage curve showing regions of single and two phase
reactions

B Galvanic Intermittent Titration Technique (GITT) studies used to

compare new two phase active material model to earlier shell-core two

phase model Gen 3 Negative Electrode GITT Study at0 C
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Earlier Development of Modified Shell-Core Two Phase
ACtive Ma terial MOdeI LiC,, / LiC;, Two Phase Region Room Temperature GITT

Experiment (0.2 mA/cm® for 10 min)
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B Standard shell-core model modified by including lithium diffusion in both phases
and a lithium concentration dependent finite phase transition rate

B Finite phase transition rate needed to account for the slow GITT relaxation data

B The slow phase transition rate suggests that the two phase boundary may occur
over a region rather than at an interface

B Analytical diagnostic studies generally indicate the shell-core model is incorrect
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New Phase-Transition Reaction-Diffusion Lithium
Transport Model for Two Phase Electrode Active Materials

M Lithium diffusion in both phases of
active material and equilibrium at
interfaces

— Volume averaged transport
equations

B Well known Avrami phase growth
equation with a lithium concentration
4 G?fvthngoﬁlr:)av:iig dependent rate constant is used to
describe the phase transition

Avrami Equation
B Avrami, equilibrium, and diffusion

Active Material
Surface

Egy = 1-— e(_ktn) equations integrated into full
_ _ _ electrochemical cell model to simulate
Active Material Particle graphitic negative electrode GITT
Cross-Section Showing studies

Two Phase Reaction Mechanism




New Phase-Transition Reaction-Diffusion Lithium
Transport Model Able to Accurately Simulate Graphite
Electrode GITT Data

LiC,, f LiC;, Two Phase Region Room Temperature GITT
Experiment {0.2 mA/cm? for 10 min)
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B New two phase model adds only one variable to electrochemical model

and is easily able to track changes in size and direction of cell current
B Should be able to follow transport of lithium in single phase regions
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Graphite Particle Li Concentration and Phase Distribution with
Observed SIOW Transition Rate Phase Distribution in Graphite Particle in LiC,; / LiCs; Two Phase

Region during and after a 4000 s 0.2 ma/cm? Discharge
10

B As current is passed, there is a slow
change in the phase distribution
throughout the particle that agrees
with analytical diagnostic studies

B The phase distribution continues to
change after current is halted as the
lithium concentration gradients in 0 o4 08 s ¥
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Artificially Increasing the Phase Growth Rate Dramatically
Changes the Phase Distribution in the Active Particles

Transikion Rate Effect on Phase Distribution in Graphite Particle at
Midpoint in LiC ;3 / LiC;; Two Phase Region
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Artificially Increasing the Phase Growth Rate Reduces the

Electrode Voltage Rise and Impedance During Discharge

Transition Rate Effect on Graphite Electrode Voltage in LiC,, f LiC;,
Two Phase Region during a 0.2 mAfem2 Discharge
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B At low currents the slow voltage rise of the electrode follows the inverse
of the lithium concentration at the surface of the active material

B |ncreasing the phase growth rate reduces lithium concentration gradients
at the surface of the active material, because of the increasing rate that
lithium is being released by the phase change
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Future Plans

® Further improve electrochemical model parameter fitting methods

— Establish a systematic parameter estimation framework for full AC
impedance lithium-ion electrochemical model

B Continue development of PHEV focused electrochemical models
— Alternative materials, additives, testing protocols
— Capacity loss degradation mechanisms

B Complete development of electrochemical model for two-phase active
materials and extend to other electrodes

B Improve DC electrochemical model to match AC model capabilities
— Include non steady-state interfacial effects
— Add capability for multiple active material particle fractions
B Milestones for next year
— Complete development of parameter fitting method
— Complete development of two phase active material model
— Initiate development of capacity loss model
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Summary

B The objective of this work is to correlate analytical diagnostic results
with the electrochemical performance of advanced lithium-ion
battery technologies for PHEV applications

B Approach for electrochemical modeling activities is to build on earlier
successful HEV characterization and modeling studies in extending
efforts to PHEV technologies

B Technical Accomplishments

— Equivalent circuit interfacial model developed for streamlining
electrode parameter estimation

— Conducted electrode thickness cell performance simulations

— Developed new phase-transition reaction-diffusion lithium
transport model for two phase electrode active materials

M Future plans include completion of parameter fitting methods and
two phase active material model development, as well as continued
development of PHEV focused models
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